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Abstract The general relativistic symmetry of quantum electrodynamics (QED) pre-
dicts that the spin vorticity of electron contributes to the kineticmomentumof electron.
The canonical quantization of QED is performed by using new b-photon, f -electron,
and f c-positron algebras. These algebras work for interacting particles and are useful
for nonperturbationally solving the dual Cauchy problems of QED.

Keywords Spin vorticity · General relativity · QED · b-Photon · f -Electron ·
f c-Positron

1 Introduction

Let us ask a simple but “odd” question: what is momentum of electron spin? “How
odd this question is” should be obvious since electron is considered a point particle
and spin is its internal degree of freedom and then spin is considered to have nothing
to do with momentum. On the contrary to this obvious common sense, we shall prove
that the spin vorticity of electron contributes to the kinetic momentum of electron.

The key idea is the general relativistic symmetry of QED (quantum electrodynam-
ics) [1,2]. QED is reformulated in a way that is covariant under general coordinate
transformation [3–5]. The consequence gives the right answer to the odd question
raised above.

In QED, every dynamical variable is given by the quantized q-number field operator
defined on the background Minkowski spacetime xμ = (ct, �x) with symbol on it,
e.g. F̂(x), distinct from countable c-number, e.g. F(x) [1]. Surprisingly, it is not the
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velocity ∂ �̂s(x)/∂t but the vorticity rot �̂s (x) of the spin vector field operator �̂s(x) that
contributes to the kinetic momentum operator �̂�(x) under the covariant symmetry of
the general coordinate transformation (with factor 1/2; see Eq. (2.21) in Sect. 2.3).

In Sect. 2, we shall first quickly review our preceding publications on general
relativistic symmetry of QED [6–9] in such a way that it warrants the derivation of
the general relativistic symmetry of electron spin vorticity. In Sect. 3, the canonical
commutation relationship of the electromagnetic field of photon and the canonical
anticommutation relationship of the Dirac field of electron and positron are studied
nonpertubationally using newdevices called the b-photon, f -electron, and f c-positron
algebras. In Sect. 4, we construct the ket vector with wave function for the dual Cauchy
problems of QED and conclude the concrete space–time resolved simulation of the
c-number 〈F̂(x)〉 for the q-number F̂(x). Mathematical details are summarized in
“Appendix 1” for the Minkowski spacetime and “Appendix 2” for general relativity.

2 Spin vorticity

2.1 Covariant derivative on the background Minkowski spacetime

On the background Minkowski spacetime, the Dirac equation of the Dirac spinor
operator ψ̂ with the covariant derivative D̂μ of QED is given as [1]

(
i h̄γ μ D̂μ − mc

)
ψ̂ = 0 (2.1)

D̂μ = ∂μ + i
q

h̄c
Âμ (2.2)

wherem is the mass of electron, c is the speed of light in vacuum, q = −e is the charge
of electron, and Âμ the Abelian gauge potential of photon in the Coulomb gauge. The
charge current

ĵμ = cq ˆ̄ψγ μψ̂, ˆ̄ψ = ψ̂†γ 0 (2.3)

satisfies the conservation law
∂μ ĵμ = 0 (2.4)

and the kinetic momentum

�̂� = 1

2

(
ψ̂†

(
i h̄ �̂D

)
ψ̂ + h.c.

)
(2.5)

satisfies the equation of motion [6]

∂

∂t
�̂� = �̂L + �̂τ� (2.6)

In the right hand side, the force is composed of the Lorentz force �̂L and the tension
�̂τ�

�̂τ� = div↔̂
τ �, �̂τ�k = ∂�τ̂

�k� (2.7)
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which is the divergence of the stress tensor ↔̂
τ �

τ̂�
μν = c

2

( ˆ̄ψγν

(
−i h̄ D̂μ

)
ψ̂ + h.c.

)
(2.8)

The stress tensor itself is not defined uniquely since mathematically any tensor whose
divergence is zero can be added to.

2.2 Covariant derivative of general relativity

To seek for the variation principle of the equation of motion on the background curved
spacetime, the semiclassical Einstein–Hilbert action integral has been used under the
symmetry of the general coordinate transformation of gravity [1]

δ Î = 0, Î = c

2κ

∫
R
√−gd4x+

1

c

∫
L̂
√−gd4x, κ = 8πG

c2
(2.9)

where R is the Ricci scalar, G is the universal gravitational constant, and L̂ is the
Lagrangian density of QED including the interaction with gravity.

The gravitational covariant derivative D̂μ (g) is then given as [3–5]

D̂μ (g) = ∂μ + i q
h̄c Âμ + +i 1

2h̄ γabμ Jab

= D̂μ + i 1
2h̄ γabμ Jab

(2.10)

with the spin angular momentum

Jab = i h̄

4

[
γ a, γ b

]
(2.11)

and spin connection
γ b
a μ = eaν;μηbceν

c (2.12)

Using the gravitational covariant derivative, the stress tensor of electron τ̂�
μν (g)

becomes [6,7]

τ̂�
μν (g) = c

2

( ˆ̄ψγν

(
−i h̄ D̂μ (g)

)
ψ̂ + h.c.

)
(2.13)

2.3 Spin vorticity

In this variation principle, due to the presence of the spin connection γabμ, a new
symmetry-polarized geometrical tensor ε̂�

μν appears and whose antisymmetric com-
ponent cancels with that of τ̂�

μν (g)

ε̂Aμν + τ̂ Aμν (g) = 0 (2.14)
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where

ε̂Aμν = 1

2

(
ε̂�μν − ε̂�νμ

)
(2.15)

τ̂ Aμν (g) = 1

2

(
τ̂�μν (g) − τ̂�νμ (g)

)
(2.16)

This cancellation is originated from the fact that in order to satisfy the symmetry
under the general coordinate transformation the energy-momentum tensor T̂μν should
be symmetric

T̂μν = T̂νμ (2.17)

It follows that the electronic part of the energy-momentum tensor T̂eμν of T̂μν should
be symmetric

T̂eμν = −ε̂�
μν − τ̂�

μν (g) = T̂eνμ (2.18)

Consequently, the cancelling is mandatory.
What is the physical meaning of Eq. (2.14)? The answer is twofold as is found if

we take the limit to the Minkowski spacetime. First, for the time sector with μ = 0,
ν = 1, 2, 3 we obtain

rot�̂s + �̂� − 1

2

( ˆ̄ψ �γ
(
i h̄ D̂0

)
ψ̂ + h.c.

)
= 0 (2.19)

Second, for the space sector with μ, ν = 1, 2, 3 we obtain

∂

∂t
�̂s − �̂t − �̂ζ = 0 (2.20)

with torque �̂t and zeta force �̂ζ . Furthermore, similarly taking the limit of Eq. (2.18)
to the Minkowski spacetime, it is found that half the vorticity, 1

2 rot�̂s, appears as the
component of the momentum added to the kinetic momentum

P̂e = �̂� + 1

2
rot�̂s (2.21)

[see “Appendix 2”, Eq. (6.22)].

Consequently, the left hand side of Eq. (2.6) should change from ∂
∂t

�̂� to
∂
∂t

( �̂� + 1
2 rot�̂s

)
; for this purpose, we need to use Eq. (2.20), and after some manipu-

lations, we finally arrive at

∂

∂t
P̂e = �̂L + �̂τ S

(2.22)

�̂τ S = div↔̂
τ
S
, �̂τ Sk = ∂�τ̂

Sk� (2.23)

τ̂ Sμν = 1

2

(
τ̂�μν + τ̂�νμ

)
(2.24)
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Fig. 1 Symmetry of the stress tensor of the Dirac field of electron and positron. Antisymmetric stress
tensor drives spin torque and zeta force through vorticity

This assures the equation of motion using solely the symmetric part of the tensor τ̂ S
k�

in the right hand side. This is schematically shown in Fig. 1.

2.4 The Cauchy problem

In QED, the dynamics of �̂s(x) is mediated by the electromagnetic field, and the asso-
ciated charge current Eq. (2.3) is conventionally represented as

ĵμ (x) =
(
cρ̂ (x) , �̂j (x)

)
(2.25)

The Cauchy problem of the QED operator dynamics in the Heisenberg representation
has been elaborated elegantly by Nakanishi using ghost field in the Landau gauge [2].

Here in this paper we use the Coulomb gauge for the vector potential �̂A(x) as

div �̂A(x) = 0 (2.26)

with the conjugate transversal electric field

�̂ET (x) = −1

c

∂

∂t
�̂A(x) (2.27)

and we do not invoke the additional ghost field.
To solve for the Cauchy problem of QED, clocks at different space points are

synchronized at t = t0 (= 0), when canonical quantization is performed with the
definition of the vacuum ket vector |0〉. The ĵμ(x) develops forward t > t0 with the
retarded interactions mediated by photon. The vacuum and field operators are not
defined backward t < t0 (see Fig. 2).
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Fig. 2 Synchronization of clocks. The charge current develops forward t > t0 with the retarded interactions
mediated by photon. The vacuum and field operators are not defined backward t < t0

The equal-time canonical quantization of the electromagnetic field leads to the
equal-time commutation relationships

[
Âi (x), Â j (y)

]
x0=y0

= 0 (2.28)
[
Ê i
T (x), Ê j

T (y)
]
x0=y0

= 0 (2.29)

1

4πc

[
Âi (x), Ê j

T (y)
]
x0=y0

= i h̄

(
ηi jδ3(�x − �y) + ∂ i∂ j

(
− 1

4π
· 1

|�x − �y|
))

(2.30)

Second, the equal-time canonical quantization of theDirac field leads to the equal-time
anti-commutation relationships

{
ψ̂� (x) , ψ̂�′ (y)

}
x0=y0

=
{
ψ̂

†
� (x) , ψ̂

†
�′ (y)

}
x0=y0

= 0 (2.31)
{
ψ̂� (x) , ψ̂

†
�′ (y)

}
x0=y0

= δ��′δ3 (�x − �y) (2.32)

The ψ̂ (x) commutes with �̂A(x)

[
ψ̂ (x) , �̂A(x)

]
= 0 (2.33)

These fields should of course be renormalized in a step-by-step way, reflecting the
time-dependent minimal coupling.
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The time-development of �̂s (x), or any field operator F̂(x) obeys the Heisenberg
equation of motion

i h̄
∂

∂t
F̂(x) =

[
F̂(x), ĤQED

]
(2.34)

with the QED Hamiltonian ĤQED. Note that ĤQED is made to be independent of time

∂

∂t
ĤQED = 0 (2.35)

The ĤQED is given in the Coulomb gauge using the normal order denoted as : : modulo
c-number albeit infinity if any

ĤQED =
∫

d3�x : ĤQED(x) : (2.36)

ĤQED(x) = 1
8π

(( �̂ET (x)
)2

+
(
rot �̂A(x)

)2
)

− 1
c
�̂j(x)· �̂A(x) + 1

2c ĵ0(x) Â0(x) + ˆ̄ψ(x)
(−i h̄γ k∂k + mc

)
ψ̂(x) × c

(2.37)

Â0(x) =
∫ ∞

−∞
d3 �y

ρ̂(y)
∣∣
y0=x0

|�x − �y| (2.38)

In due course, for application to realistic situation in experiments of spin dynamics, we
need to set up wave function in order to discriminate numbers of electrons, positrons
and photons, and calculate

〈
F̂ (x)

〉
= H 〈�| F̂ (x) |�〉H

H 〈�|�〉H
(2.39)

where |�〉H denotes the time-independent ket vector in the Heisenberg representation.
This is another Cauchy problem in QED (see Sect. 4).

3 New algebras

3.1 Causality and initial condition

Toobtain F̂ (x)with xμ = (ct, �x) at position �x with time t in theMinkowski spacetime,
we may collect information of ĵμ(y) with yμ = (cu, �y) at distant �y with the retarded
time u = t − |�x−�y|

c satisfying causality

ĵμ(cu, �y) = 0, u > t (3.1)

and initial condition (see Fig. 3)

ĵμ(cu, �y) = 0, u < t0 (3.2)
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Fig. 3 Causality and initial condition

For this purpose, in the following discussions we may use that any function F(u)

satisfying
F(u) = 0, u < t0, u > t (3.3)

may be obtained at u with t0 < u = t − |�x−�y|
c < t as [8]

F(u)|
u=t− |�x−�y|

c
= ∫ ∞

−∞ du′F(u′)δ
(
u′ −

(
t − |�x−�y|

c

))

= |�x−�y|
cπ

∫ t
t0
du′ ∫ ∞

−∞ dαF(u′)e
iα

(
(u′−t)

2− (�x−�y)2
c2

) (3.4)

where we have used the delta function

δ
((
u′ − t

)2 − a2
)

= 1

2a

(
δ

((
u′ − t

) − a
) + δ

((
u′ − t

) + a
))

, a > 0 (3.5)

with

δ

(
(
u′ − t

)2 − (�x − �y)2
c2

)
= 1

2π

∫ ∞

−∞
dαe

iα

(
(u′−t)

2− (�x−�y)2
c2

)

(3.6)

3.2 Electromagnetic field

The vector potential �̂A(x) should satisfy the Maxwell equation

� �̂A(x) = 4π

c
�̂j T (x) (3.7)
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Fig. 4 Separation of variables for real-time simulation. Non-causal data are swept out through integration
with α

with the transversal charge current

�̂j T (x) = �̂j(x) − 1

4π
grad

∂

∂t
Â0(x) (3.8)

Using the standard Green function, we have [1]

�̂A(x) = �̂Aradiation(x) + �̂AA(x) (3.9)

�̂AA(ct, �x) = 1

c

∫ ∞

−∞
du

∫ ∞

−∞
d3 �y �̂jT(cu, �y)

|�x − �y| δ

(
u −

(
t − |�x − �y|

c

))

= 1

c2π

∫ t

t0
du

∫ ∞

−∞
dα

∫ ∞

−∞
d3 �y �̂jT(cu, �y)eiα

(
(t−u)2− (�x−�y)2

c2

)

(3.10)

where �̂Aradiation(x) denotes the radiation vector potential. It should be noted that we
have used Eq. (3.4) using the causality and initial condition and then obtained the

retarded potential �̂AA(x) with separation of space–time variables (see Fig. 4).

The �̂Aradiation(x) is given by the aradiation-photon field

�̂Aradiation(x) = �̂aradiation(x) + �̂a†radiation(x) (3.11)

�̂aradiation(x) =
√
4π h̄2c√
(2π h̄)3

∑
σ=±1

∫ ∞

−∞
d3 �p√

2p0radiation

âradiation ( �p, σ ) e−i xμ pμ
radiation/h̄ �e( �p, σ )

(3.12)
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with the usual dispersion relationship of spectrum

pμ
radiation =

(
p0radiation, �p

)
, p0radiation = hνradiation

c
= | �p| (3.13)

and the polarization vector �e( �p, σ )

�p·�e( �p, σ ) = 0 (3.14)
∑

σ=±1

ei ( �p, σ ) e j
∗
( �p, σ ) = −ηi j + pi p j

− | �p|2 (3.15)

3∑
i=1

ei ( �p, σ ) ei
∗ ( �p, σ ′) = δσσ ′ (3.16)

Note the usual commutation algebra of the aradiation-photon field

[
âradiation ( �p, σ ) , âradiation

(�q, σ ′)] =
[
â†radiation ( �p, σ ) , â†radiation

(�q, σ ′)]
= 0

(3.17)[
âradiation ( �p, σ ) , â†radiation

(�q, σ ′)]
= δσσ ′δ3 ( �p − �q) (3.18)

The generic solution may be given by using the b-photon field defined as follows

�̂A(x) = �̂b(x) + �̂b
†
(x) (3.19)

�̂b(x) =
√
4π h̄2c√
(2π h̄)3

∑
σ=±1

∫ ∞

0
dν

∫ ∞

−∞
d3 �p√

2p0 (ν, | �p|) b̂ (ν, �p, σ ) e−i2πνt �e( �p, σ )ei �x · �p/h̄

(3.20)

By using the integral form of the current

�̂j T (x) = 1√
(2π h̄)3

∫ ∞

0
dν

∫ ∞

−∞
d3 �p

×
(

�̂j T (ν, �p) e−i2πνt ei �x · �p/h̄ + �̂j
†

T (ν, �p) e+i2πνt e−i �x · �p/h̄
)

(3.21)

the b-photon field may be represented as

√
4π h̄2c√

2p0 (ν, | �p|)

(
−

(
2πν

c

)2

+ | �p|2
h̄2

) ∑
σ=±1

b̂ (ν, �p, σ ) �e( �p, σ ) = 4π

c
�̂j T (ν, �p)

(3.22)
Comparing Eq. (3.22) with Eqs. (3.9), (3.11), and (3.19), we may observe that the

aradiation-photon fields are sticking to the b-photon field through �̂j T (x). This sticking
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process may be called “thermalization” of the aradiation-photon fields to the b-photon
field. Note that the real positive number p0 (ν, | �p|) in Eq. (3.20) is the counterpart of
p0radiation in Eqs. (3.12) and (3.13). The p0 (ν, | �p|) is a function of ν and | �p| serving
as the thermalized solution of Eq. (3.22).

The field algebra in Eqs. (2.28)–(2.30) are recovered if we assume the b-photon
algebra

[
b̂ (ν, �p, σ ) , b̂

(
ν′, �q, σ ′)]

=
[
b̂† (ν, �p, σ ) , b̂†

(
ν′, �q, σ ′)]

= 0 (3.23)
[
b̂ (ν, �p, σ ) , b̂†

(
ν′, �q, σ ′)]

= δσσ ′δ3 ( �p − �q) δ
(
ν − ν (| �p|)b

)
δ

(
ν′ − ν (|�q|)b

)

(3.24)

where ν (| �p|)b denotes real positive frequency that depends on | �p|. The b-photon field
apparently includes the aradiation-photon field in a delta-function form

b̂ (ν, �p, σ ) ⊃ âradiation ( �p, σ ) δ (ν − νradiation) (3.25)

Then, the electromagnetic part of ĤQED (modulo c-number vacuum energy) in Eqs.
(2.36) and (2.37) is given as

ĤQED ⊃ ∫
d3�x : 1

8π

(( �̂ET (x)
)2

+
(
rot �̂A(x)

)2
)

:

= h̄2c
∑

σ=±1

∫ ∞

0
dν

∫ ∞

0
dν′

∫ ∞

−∞
d3 �p√

2p0 (ν, | �p|)√2p0 (ν′, | �p|)
×

((
2πν

c

) (
2πν′

c

)
+ | �p|2

h̄2

)
b̂† (ν, �p, σ ) b̂

(
ν′, �p, σ )

ei2π(ν−ν′)t

(modulo c-number)

(3.26)

which part may depend on t and t0 although ĤQED is independent of t . Moreover,
Eq. (3.26) includes the radiation part (modulo time-independent c-number vacuum
energy) given as

∫
d3�x : 1

8π

(( �̂ET (x)
)2

+
(
rot �̂A(x)

)2
)

:

⊃
∫

d3�x : 1

8π

(( �̂ETradiation(x)
)2

+
(
rot �̂Aradiation(x)

)2
)

:

=
∑

σ=±1

∫ ∞

−∞
d3 �pcp0radiationâ†radiation ( �p, σ ) âradiation ( �p, σ )

(modulo time-independent c-number)

(3.27)

which is manifestly independent of t as well as t0.
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3.3 The Dirac field

The ψ̂(x) may be given by using the spinor Green function K (x, y) as [1]

ψ̂(x) = ψ̂free(x) + 1

i h̄

∫
d4yK (x, y)

(
−q

c
ˆ� A (y)

)
ψ̂(y) (3.28)

(−i h̄ � ∂ + mc)K (x, y) = i h̄δ4 (x − y) (3.29)

where ψ̂free(x) denotes the free field. The ψ̂free(x) is given by the free efree-electron
and ecfree-positron fields

ψ̂free(x) = êfree(x) + êc†free(x) (3.30)

êfree�
(x) = 1√

(2π h̄)3

∑

σ=± 1
2

∫ ∞

−∞
d3 �pêfree ( �p, σ ) e−i xμ pμ

free/h̄u�( �p, σ ) (3.31)

êc†free�
(x) = 1√

(2π h̄)3

∑

σ=± 1
2

∫ ∞

−∞
d3 �pêc†free ( �p, σ ) e+i xμ pμ

free/h̄v�( �p, σ ) (3.32)

with the usual dispersion relationship of spectrum

pμ
free =

(
p0free, �p

)
, p0free = hνfree

c
=

√
(mc)2 + | �p|2 (3.33)

and the anti-commutation algebra

{
êfree ( �p, σ ) , êfree

(�q, σ ′)} = {
êcfree ( �p, σ ) , êcfree

(�q, σ ′)}

=
{
ê†free ( �p, σ ) , ê†free

(�q, σ ′)}

=
{
êc

†

free ( �p, σ ) , êc
†

free

(�q, σ ′)}
= 0 (3.34)

{
êfree ( �p, σ ) , ê†free

(�q, σ ′)}
=

{
êcfree ( �p, σ ) , êc

†

free

(�q, σ ′)}
= δσσ ′δ3 ( �p − �q)

(3.35)

The Dirac spinors u( �p, σ ) for electron and v( �p, σ ) for positron satisfy

(
pμ
freeγμ − mc

)
u( �p, σ ) = 0 (3.36)(

pμ
freeγμ + mc

)
v( �p, σ ) = 0 (3.37)

∑

σ=± 1
2

u( �p, σ )ū( �p, σ ) = 1

2p0free

(
pμ
freeγμ + mc

)
(3.38)

∑

σ=± 1
2

v( �p, σ )v̄( �p, σ ) = 1

2p0free

(
pμ
freeγμ − mc

)
(3.39)
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ū( �p, σ )γ μu( �p, σ ′) = v̄( �p, σ )γ μv( �p, σ ′) =
(
pμ
free/p

0
free

)
δσσ ′ (3.40)

ū( �p, σ )γ 0v(− �p, σ ′) = v̄( �p, σ )γ 0u(− �p, σ ′) = 0 (3.41)

The generic solution may be given by using the f -electron and f c-positron fields
defined as follows

ψ̂(x) = f̂ (x) + f̂ c†(x) (3.42)

f̂�(x) = 1√
(2π h̄)3

∑

σ=± 1
2

∫ ∞

0
dν

∫ ∞

−∞
d3 �p f̂ (ν, �p, σ ) e−i2πνt u�( �p, σ )ei �x · �p/h̄

(3.43)

f̂ c†� (x) = 1√
(2π h̄)3

∑

σ=± 1
2

∫ ∞

0
dν

∫ ∞

−∞
d3 �p f̂ c† (ν, �p, σ ) e+i2πνtv�( �p, σ )e−i �x · �p/h̄

(3.44)

Applying the first thermalization of the b-photon field Eqs. (3.22)–(2.1), we obtain
the second thermalization of the f -electron field

q

c
γ 0

∫ ∞

0
dν′

∫ ∞

−∞
d3 �q Â0

(
ν − ν′, �p − �q) ∑

σ=± 1
2

f̂
(
ν′, �q, σ

)
u(�q, σ )

= 4π

c

∫ ∞

0
dν′

∫ ∞

−∞
d3 �q(

−
(
2πν′
c

)2 + |�q|2
h̄2

)

×
⎛
⎜⎝γk ĵ

k
T

(
ν′, �q) ∑

σ=± 1
2

f̂
(
ν − ν′, �p − �q, σ

)
u( �p − �q, σ )

+ γk ĵ
†k
T

(
ν′, �q) ∑

σ=± 1
2

f̂
(
ν + ν′, �p + �q, σ

)
u( �p + �q, σ )

⎞
⎟⎠ (3.45)

with

Â0 (ν, �p) = q

(2π h̄)3

∑

σ=± 1
2

∑

σ ′=± 1
2

∫ ∞

0
dν′

∫ ∞

−∞
d3 �q

×
(
f̂ †

(
ν′, �q, σ

)
f̂

(
ν + ν′, �p + �q, σ ′) u†(�q, σ )u( �p + �q, σ ′)

+ f̂ †
(
ν′, �q, σ

)
f̂ c†

(−ν − ν′,− �p − �q, σ ′) u†(�q, σ )v(− �p − �q, σ ′)
+ f̂ c

(
ν′, �q, σ

)
f̂

(
ν − ν′, �p − �q, σ ′) v†(�q, σ )u( �p − �q, σ ′)

+ f̂ c
(
ν′, �q, σ

)
f̂ c†

(−ν + ν′,− �p + �q, σ ′) v†(�q, σ )v(− �p + �q, σ ′)
)

(3.46)
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and the third thermalization of the f c-positron field

q

c
γ 0

∫ ∞

0
dν′

∫ ∞

−∞
d3 �q Â†

0

(
ν − ν′, �p − �q) ∑

σ=± 1
2

f̂ c†
(
ν′, �q, σ

)
v(�q, σ )

= 4π

c

∫ ∞

0
dν′

∫ ∞

−∞
d3 �q(

−
(
2πν′
c

)2+ |�q|2
h̄2

)

⎛
⎜⎝γk ĵ

k
T

(
ν′, �q) ∑

σ=± 1
2

f̂ c†
(
ν + ν′, �p + �q, σ

)

×v( �p + �q, σ ) + γk ĵ
†k
T

(
ν′, �q) ∑

σ=± 1
2

f̂ c†
(
ν − ν′, �p − �q, σ

)
v( �p − �q, σ )

⎞
⎟⎠ (3.47)

The field algebra in Eqs. (2.31) and (2.32) are recovered if we assume the f -electron
and f c-positron algebras

{
f̂ (ν, �p, σ ) , f̂

(
ν′, �q, σ ′)}

=
{
f̂ c (ν, �p, σ ) , f̂ c

(
ν′, �q, σ ′)}

=
{
f̂ † (ν, �p, σ ) , f̂ †

(
ν′, �q, σ ′)}

=
{
f̂ c† (ν, �p, σ ) , f̂ c†

(
ν′, �q, σ ′)}

= 0
(3.48)

{
f̂ (ν, �p, σ ) , f̂ †

(
ν′, �q, σ ′)}

=
{
f̂ c (ν, �p, σ ) , f̂ c†

(
ν′, �q, σ ′)}

= δσσ ′δ3 ( �p − �q) δ
(
ν − ν (| �p|) f

)
δ

(
ν′ − ν (|�q|) f

) (3.49)

where ν (| �p|) f denotes real positive frequency that depends on | �p|. Also, Eq. (2.33)
is recovered if we assume

[
f̂ (ν, �p, σ ) , b̂

(
ν′, �q, σ ′)]

=
[
f̂ c (ν, �p, σ ) , b̂

(
ν′, �q, σ ′)]

=
[
f̂ † (ν, �p, σ ) , b̂

(
ν′, �q, σ ′)]

=
[
f̂ c† (ν, �p, σ ) , b̂

(
ν′, �q, σ ′)]

= 0
(3.50)

The f -electron and f c-positron fields apparently include the efree-electron and ecfree-
positron fields respectively in the delta-function forms

f̂ (ν, �p, σ ) ⊃ êfree ( �p, σ ) δ (ν − νfree) (3.51)

f̂ c (ν, �p, σ ) ⊃ êcfree ( �p, σ ) δ (ν − νfree) (3.52)

Then, the Dirac part of ĤQED (modulo c-number vacuum energy) in Eqs. (2.36) and
(2.37) is given as

ĤQED ⊃
∫

d3�x : ˆ̄ψ(x)
(
−i h̄γ k∂k + mc

)
ψ̂(x) × c :

=
∑

σ=±1

∫ ∞

0
dν

∫ ∞

0
dν′

∫ ∞

−∞
d3 �pcp0free

×
(
f̂ †(ν, �p, σ ) f̂

(
ν′, �p, σ)

e+i2π(ν−ν′)t + f̂ c†
(
ν′, �p, σ )

f̂ c (ν, �p, σ ) e−i2π(ν−ν′)t
)

(modulo c-number) (3.53)
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which part may depend on t and t0 although ĤQED is independent of t . Moreover,
Eq. (3.53) includes the free part (modulo time-independent c-number vacuum energy)
given as

∫
d3�x : ˆ̄ψ(x)

(
−i h̄γ k∂k + mc

)
ψ̂(x) × c :

⊃
∫

d3�x : ˆ̄ψfree(x)
(
−i h̄γ k∂k + mc

)
ψ̂free(x) × c :

=
∑

σ=± 1
2

∫ ∞

−∞
d3 �pcp0free

(
ê†free ( �p, σ ) êfree ( �p, σ ) + êc†free ( �p, σ ) êcfree ( �p, σ )

)

(modulo time-independent c-number) (3.54)

which is manifestly independent of t as well as t0.

4 Conclusion

The wave function�N (ω1, . . . , ωN ) in the Hilbert space of QED is equipped with the
ket vector

|�〉Hor S =
∞∑
N=0

∫
dω1 . . .dωN |ω1, . . . , ωN 〉Hor S �N (ω1, . . . , ωN ) (4.1)

in term of theHeisenberg (H) or Schrödinger (S) representation satisfying theHeisen-
berg equation

i h̄
∂

∂t
|�〉H = 0 (4.2)

or the Schrödinger equation

i h̄
∂

∂t
|�〉S = ĤQED |�〉S , |�〉S = e

1
i h̄ ĤQED(t−t0) |�〉H (4.3)

The ω denotes the collected set of variables for expansion of the wave function using
the basis ket vectors; a primitive choice may be given with the obvious notation

|ω1, . . . , ωN 〉H at t=t0 = 1√
Nb! b̂

†
(
ω1b

)
· · · b̂†

(
ωNb

)

× 1√
N f !

f̂ †
(
ω1 f

) · · · f̂ † (
ωN f

)

× 1√
N f c !

f̂ c†
(
ω1 f c

)
· · · f̂ c†

(
ωN f c

)
|0〉 (4.4)

�N (ω1, . . . , ωN ) = �N (ω1b , . . . , ωNb , ω1 f , . . . , ωN f , ω1 f c , . . . , ωN f c )

(4.5)
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N = Nb ⊕ N f ⊕ N f c (4.6)

ω = ωb ⊗ ω f ⊗ ω f c (4.7)

ωb, ω f , ω f c = {ν, �p, σ } (4.8)

For permutation P of variables

�N (ωP1, . . . , ωPN ) = �N (ωPb1b , . . . , ωPbNb ,

×ωPf 1 f , . . . , ωPf N f , ωPf c1 f c , . . . , ωPf c N f c ) (4.9)

P = Pb ⊗ Pf ⊗ Pf c (4.10)

the wave function changes the antisymmetric (−) sign

sgn (P) �N (ωP1, . . . , ωPN ) = �N (ω1, . . . , ωN ) (4.11)

sgn (P) = (−)Pf (−)Pf c (4.12)

Using the primitive choice described above, the basis vectors are orthonormal

H
〈
ω1, . . . , ωN |ω′

1, . . . , ω
′
M

〉
H

= δNbMb

1

Nb!
∑
Pb

δb
(
ω1b − ω′

Pb1b

) · · · δb
(
ωNb − ω′

PbNb

)

× δN f M f

1

N f !
∑
Pf

(−)Pf δ f

(
ω1 f − ω′

Pf 1 f

)
· · · δ f

(
ωN f − ω′

Pf N f

)

× δN f c M f c

1

N f c !
∑
Pf c

(−)Pf c δ f c
(
ω1 f c − ω′

Pf c1 f c

)
· · · δ f c

(
ωN f c − ω′

Pf c N f c

)

(4.13)

with

δb
(
ωb − ω′

b

) = δσσ ′δ3
( �p − �p′) δ

(
ν − ν (| �p|)b

)
δ

(
ν′ − ν

(∣∣ �p′∣∣)
b

)
(4.14)

δ f

(
ω f − ω′

f

)
= δ f c

(
ω f c − ω′

f c

)
= δσσ ′δ3

( �p − �p′) δ
(
ν − ν (| �p|) f

)

×δ
(
ν′ − ν

(∣∣ �p′∣∣)
f

)
(4.15)

This demonstrates another Cauchy problem in QED. Namely, for an event αi starting
at ti with t0 < ti ; i = 1, 2, 3, . . ., we set up the initial ket vector |� (αi , ti )〉H for Eq.
(4.2) but need to obtain the wave function �N (αi , ti ;ω1, . . . , ωN , t) developing from
ti to t with ti < t onward obeying
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i h̄
∂

∂t
�N (αi , ti ;ω1, . . . , ωN , t)

=
∞∑

M=0

∫
dω′

1 · · ·dω′
MHNM (ω1, . . . , ωN , ω′

1, . . . , ω
′
M )�M (αi , ti ;ω′

1, . . . , ω
′
M , t)

(4.16)

using the time-independent function

HNM (ω1, . . . , ωN , ω′
1, . . . , ω

′
M ) = S 〈ω1, . . . , ωN | ĤQED

∣∣ω′
1, . . . , ω

′
M

〉
S

= H 〈ω1, . . . , ωN | ĤQED
∣∣ω′

1, . . . , ω
′
M

〉
H (4.17)

∂

∂t
HNM (ω1, . . . , ωN , ω′

1, . . . , ω
′
M ) = 0 (4.18)

Finally, substituting this time-dependent �N (αi , ti ;ω1, . . . , ωN , t) into Eq. (4.1), we

calculate 〈F̂ (x)〉αi ,ti = H 〈�(αi ,ti )|F̂(x)|�(αi ,ti )〉H
H 〈�(αi ,ti )|�(αi ,ti )〉H for each event αi starting at ti with

t0 < ti < t ;i = 1, 2, 3, . . . developing onward with xμ = (ct, �x) at position �x with
time t in using Eq. (2.39).

This concludes the way for solving the dual Cauchy problems in QED using the
new b-photon, f -electron, and f c-positron algebras. These new algebras work for
interacting particles through the first thermalization Eq. (3.22), the second Eq. (3.45),
and the third Eq. (3.47). As compared with the conventional Gell-Mann–Low rela-
tionship using covariant perturbational approach [1], this present approach paves the
way for realizing nonperturbationally space–time resolved simulation of QED.

Acknowledgments This work was partially supported by a Grant-in-Aid for Scientific Research from
the Japan Society for the Promotion of Science (25410012).

5 Appendix 1

In this Appendix, we may first quickly review basic mathematics. The coordinate x
with the contravariant components xμ and the covariant components xμ and themetric
tensor ημν = ημν of the Minkowski spacetime, together with the inner product of two
4-vectors A and B written as A · B as well as the inner product of the Dirac gamma
matrices γ μ and a 4-vector A written as the Dirac slash � A are defined as

xμ =
(
x0, xk

)
=

(
x0, x1, x2, x3

)
= (ct, x, y, z) = (ct, �r) = (ct, �x) (5.1)

xμ = ημνx
ν = (x0, xk) = (x0, x1, x2, x3) = (ct,−x,−y,−z) = (ct,−�r)

= (ct,−�x) (5.2)

ημν =

⎛
⎜⎜⎝
1 0 0 0
0 −1 0 0
0 0 −1 0
0 0 0 −1

⎞
⎟⎟⎠ = ημν, ημρηρν = δμ

ν =
{
1, μ=ν

0, μ �= ν
(5.3)
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∂μ = ∂

∂xμ
=

(
∂

∂x0
,

∂

∂x1
,

∂

∂x2
,

∂

∂x3

)
=

(
1

c

∂

∂t
, �∇

)
=

(
1

c

∂

∂t
, grad

)
(5.4)

∂μ = ημν ∂

∂xν
=

(
∂

∂x0
,− ∂

∂x1
,− ∂

∂x2
,− ∂

∂x3

)
=

(
1

c

∂

∂t
,−�∇

)
=

(
1

c

∂

∂t
,−grad

)

(5.5)

A · B = ημν A
μBν = A0B0 − �A· �B, �A· �B = Ax Bx + Ay By + Az Bz (5.6)

� A = ημνγ
μAν = γ 0A0 − �γ · �A, �γ · �A = γ 1Ax + γ 2Ay + γ 3Az (5.7)

� = ∂2 =
(
1

c

∂

∂t

)2

− �, � = ( �∇)2 (5.8)

{A, B} = AB + BA = [A, B]+ ; [A, B] = AB − BA = [A, B]− (5.9)

where the Einstein summation convention is used.
The spinor in the chiral representation ψchiral (x) is constructed by the undotted

spinor ψR (x) = ξ A (x) with right-handed chirality and the dotted spinor ψL (x) =
ηU̇ (x) with left-handed chirality as

ψ = ψchiral =
(

ψR

ψL

)
=

(
ξ A

ηU̇

)
(5.10)

ξ A =
(

ξ1

ξ2

)
, ηU̇ =

(
η1̇
η2̇

)
(5.11)

The undotted and dotted capital Latin letters run from 1 to 2 and change position by
using the antisymmetric matrix ε as

ξA = ξ BεBA, ηU̇ = εU̇ V̇ ηV̇ (5.12)

ξ A = εABξB, ηU̇ = ηV̇ εV̇ U̇ (5.13)

εAB =
(
0 1
−1 0

)
= εAB, εU̇ V̇ =

(
0 1
−1 0

)
= εU̇ V̇ (5.14)

where the Einstein summation convention is used.
The Pauli matrix σ with the contravariant components σμ and the covariant com-

ponents σμ

σμ =
(
σ 0, σ k

)
=

(
σ 0, σ 1, σ 2, σ 3

)
= (

1, σx , σy, σz
) = (1, �σ) (5.15)

σμ = ημνσ
ν = (σ0, σk) = (σ0, σ1, σ2, σ3) = (

1,−σx ,−σy,−σz
) = (1,−�σ)

(5.16)

(note the use of 1 as the unit matrix) are cast into theMTW (Misner–Thorne–Wheeler)
representation [10]
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(σ0)
AU̇ = (

σ 0
)
V̇ B =

(
1 0
0 1

)
= σ 0

(σ1)
AU̇ = (

σ 1
)
V̇ B =

(
0 1
1 0

)
= σx

(σ2)
AU̇ = (

σ 2
)
V̇ B =

(
0 −i
i 0

)
= σy

(σ3)
AU̇ = (

σ 3
)
V̇ B =

(
1 0
0 −1

)
= σz

(5.17)

Also, the Dirac gamma matrices γ μ and the chiral matrix γ5

γ5 = iγ 0γ 1γ 2γ 3 (5.18)

are given in the chiral representation using the MTW representation of the Pauli
matrices as

γ 0 =
(

0 (σ0)
AU̇(

σ 0
)
V̇ B 0

)
=

(
0 σ 0

σ 0 0

)
=

(
0 1
1 0

)

γ k =
(

0 − (σk)
AU̇(

σ k
)
V̇ B 0

)
=

(
0 −σ k

σ k 0

)

γ5 =
( (

σ 0
)A
B 0

0 − (
σ 0

)V̇
U̇

)
=

(
σ 0 0
0 −σ 0

)
=

(
1 0
0 −1

)
= −γ 5 (5.19)

where the following MTW representation is found for the diagonal block

(
σ 0

)A
B = (

σ 0
)V̇
U̇ = σ 0

(
σ 1

)A
B = (

σ 1
)V̇
U̇ = σx(

σ 2
)A
B = (

σ 2
)V̇
U̇ = σy(

σ 3
)A
B = (

σ 3
)V̇
U̇ = σz

(5.20)

The Clifford algebra of the Dirac gamma matrices should be

{
γ μ, γ ν

} = 2ημν

( (
σ 0

)A
B 0

0
(
σ 0

)V̇
U̇

)
= 2ημν

(
1 0
0 1

)
= 2ημν (5.21)

6 Appendix 2

In this “Appendix 2”, we quickly review variation principle of QED with gravitation.
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6.1 Semiclassical Einstein–Hilbert gravitational action for QED

The semiclassical Einstein–Hilbert gravitational action IG is added to the system
action IS and made stationary

δ I = 0, I = IG + IS (6.1)

First, for the variation δgμν of the symmetric metric tensor gμν = gνμ, the Einstein
equation is derived as

Gμν = Yμν (6.2)

Gμν = 1√−g

δ

δgμν

2κ

c
IG = Rμν − 1

2
gμνR = Gνμ (6.3)

Yμν = − 1√−g

δ

δgμν

2κ

c
IS = − κ

c2
Tμν = Yνμ (6.4)

In QED system, the variation principle leads to the Dirac equation of electron

(
i h̄γ aeμ

a Dμ (g) − mc
)
ψ = 0 (6.5)

and the Maxwell equation of photon

∇νF
μν = 4π

c
jμ (6.6)

with the continuity equation of current

∂μ jμ = 0 (6.7)

In terms of the vector potential, we have the field equation

∇ν∇ν A
μ + Rμ

ν Aν − ∇μ∇ν A
ν = 4π

c
jμ (6.8)

Let the Coulomb gauge be given as

∇i A
i = 0 (6.9)

Then, we get the Laplace equation

∇ i∇i A
0 + R0

ν A
ν = 4π

c
j0 (6.10)

and the d’Alembert equation

∇μ∇μA
i + Ri

ν A
ν − ∇ i∇0A

0 = 4π

c
j i (6.11)

123



J Math Chem (2015) 53:1943–1965 1963

We may further introduce the longitudinal and the transversal currents as

j i = j iT + j iL (6.12)

in such a way that Eq. (6.11) is reduced to a separable form

−∇ i∇0A
0 = 4π

c
j iL (6.13)

∇μ∇μA
i + Ri

ν A
ν = 4π

c
j iT (6.14)

The symmetric energy-momentum tensor

Tμν = −ε�
μν − τ�

μν (g) − 1

4π
gρσ FμρFνσ − gμν (LEM + Le) = Tνμ (6.15)

Tμν = TEMμν + Teμν (6.16)

TEMμν = − 1

4π
gρσ FμρFνσ − gμνLEM = TEMμν (6.17)

Teμν = −ε�
μν − τ�

μν (g) − gμνLe = Teμν (6.18)

satisfies the conservation law

∇λT
λ
μ = 0 (6.19)

Also the antisymmetric angular momentum tensor

Mλμν = xμT λν − xνT λμ = −Mλνμ (6.20)

satisfies the conservation law

∂λM
λk� = 0 (6.21)

6.2 Energy-momentum tensor and spin vorticity

In the limit to non-gravitation field, the energy-momentum tensor Teμν is reduced to

Tμν
e →

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

1
2 (M + h.c.) c

( �� + 1
2 rot�s

)
x
c

( �� + 1
2 rot�s

)
y
c

( �� + 1
2 rot�s

)
z

c
( �� + 1

2 rot�s
)
x

−τ S
xx + Le −τ S

xy −τ S
xz

c
( �� + 1

2 rot�s
)
y

−τ S
yx −τ S

yy + Le −τ S
yz

c
( �� + 1

2 rot�s
)
z

−τ S
zx −τ S

zy −τ S
zz + Le

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

(6.22)
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with the mass term M . The energy-momentum tensor TEMμν is then reduced to

Tμν
EM →

⎛
⎜⎜⎝

Hγ cGx cGy cGz

cGx σxx σxy σxz
cGy σyx σyy σyz

cGz σzx σzy σzz

⎞
⎟⎟⎠ (6.23)

with the Poynting vector �G and the Maxwell stress tensor ↔
σ . The conservation law

Eq. (6.19) of energy and momentum is then reduced to

∇νT
ν0 = 0 → ∂

∂t
cP0 + c2div �P = 0 (6.24)

∇νT
νk = 0 → ∂

∂t
�P + div

(↔
σ − ↔

τ
S
)

= 0 (6.25)

Pμ =
(

1
2 (M + h.c.) + Hγ

c
, �� + 1

2
rot�s + �G

)
(6.26)

The conservation law Eq. (6.21) of angular momentum is then reduced to

∂λM
λk� = 0 → ∂

∂t
�J + div

(
�r ×

(↔
σ − ↔

τ
S
))

= 0 (6.27)

1

c
M0k� → �J = �r × �� + �r × 1

2
rot�s + �r × �G (6.28)

Now that the vorticity plays an important role as momentum, and it is associated

with antisymmetric electronic stress tensor ↔
τ
A
, we may further prove that symmetric

electronic stress tensor↔
τ
S
plays an important role as tension �τ S = div↔

τ
S
compensating

the Lorentz force �L as

∂

∂t

(
�� + 1

2
rot�s

)
= �L + �τ S (6.29)
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